JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    On Optimizing Ensemble Models using Column Generation.

    • Autor
      Aziz, Vanya; Wu, Ouyang; Nowak, Ivo; Hendrix, Eligius María TheodorusAutoridad Universidad de Málaga; Kronqvist, Jan
    • Fecha
      2024-02-22
    • Editorial/Editor
      Springer Nature
    • Palabras clave
      Programación lineal
    • Resumen
      In recent years, an interest appeared in integrating various optimization algorithms in machine learning. We study the potential of ensemble learning in classification tasks and how to efficiently decompose the underlying optimization problem. Ensemble learning has become popular for machine learning applications and it is particularly interesting from an optimization perspective due to its resemblance to column gener- ation. The challenge for learning is not only to obtain a good fit for the training data set, but also good generalization, such that the classifier is generally applicable. Deep networks have the drawback that they require a lot of computational effort to get to an accurate classification. Ensemble learning can combine various weak learners, which individually require less computational time. We consider binary classification prob- lems studying a three-phase algorithm. After initializing a set of base learners refined by a bootstrapping approach, base learners are generated using the solution of an linear programming (LP) master problem and then solving a machine learning sub-problem regarding a reduced data set, which can be viewed as a so-called pricing problem. We theoretically show that the algorithm computes an optimal ensemble model in the convex hull of a given model space. The implementation of the algorithm is part of an ensemble learning framework called decolearn. Numerical experiments with CIFAR-10 data set show that the base learners are diverse and that both the training and generalization error are reduced after several iterations.
    • URI
      https://hdl.handle.net/10630/35165
    • DOI
      https://dx.doi.org/10.1007/s10957-024-02391-9
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    2024_JOTA_ensemble.pdf (1.189Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA