JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Predicting the effects of suspenseful outcome for automatic storytelling

    • Autor
      De la Torre-Moreno, Pablo; León, Carlos; Salguero-Hidalgo, Alberto GabrielAutoridad Universidad de Málaga; Tapscott, Alan; de la torre, Pablo
    • Fecha
      2020-12-17
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Teoría de la predicción; Sistemas narrativos
    • Resumen
      Automatic story generation systems usually deliver suspense by including an adverse outcome in the narrative, in the assumption that the adversity will trigger a certain set of emotions that can be categorized as suspenseful. However, existing systems do not implement solutions relying on predictive models of the impact of the outcome on readers. A formulation of the emotional effects of the outcome would allow storytelling systems to perform a better measure of suspense and discriminate among potential outcomes based on the emotional impact. This paper reports on a computational model of the effect of different outcomes on the perceived suspense. A preliminary analysis to identify and evaluate the affective responses to a set of outcomes commonly used in suspense was carried out. Then, a study was run to quantify and compare suspense and affective responses evoked by the set of outcomes. Next, a predictive model relying on the analyzed data was computed, and an evolutionary algorithm for automatically choosing the best outcome was implemented. The system was tested against human subjects’ reported suspense and electromyography responses to the addition of the generated outcomes to narrative passages. The results show a high correlation between the predicted impact of the computed outcome and the reported suspense.
    • URI
      https://hdl.handle.net/10630/35347
    • DOI
      https://dx.doi.org/10.1016/j.knosys.2020.106450
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S0950705120305797-main.pdf (673.1Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA