Mostrar el registro sencillo del ítem

dc.contributor.authorGómez de la Varga, J.
dc.contributor.authorPineda-Morente, Salvador 
dc.contributor.authorMorales-González, Juan Miguel 
dc.contributor.authorPorras, A.
dc.date.accessioned2024-11-29T12:53:01Z
dc.date.available2024-11-29T12:53:01Z
dc.date.created2024-11
dc.date.issued2025-04
dc.identifier.urihttps://hdl.handle.net/10630/35408
dc.description.abstractThe task of state estimation in active distribution systems faces a major challenge due to the integration of different measurements with multiple reporting rates. As a result, distribution systems are essentially unobservable in real time, indicating the existence of multiple states that result in identical values for the available measurements. Certain existing approaches utilize historical data to infer the relationship between real-time available measurements and the state. Other learning-based methods aim to estimate the measurements acquired with a delay, generating pseudo-measurements. Our paper presents a methodology that utilizes the outcome of an underdetermined state estimator of an unobservable network state estimator to exploit information on the joint probability distribution between real-time available measurements and delayed ones to generate new physics-informed interpretable features. Through numerical simulations conducted on two realistic distribution grids of different size with insufficient real-time measurements, the proposed procedure showcases superior performance compared to existing state forecasting approaches and those relying on inferred pseudo-measurementses_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga/CBUAes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAprendizaje automáticoes_ES
dc.subjectIngeniería eléctricaes_ES
dc.subject.otherReal-time observabilityes_ES
dc.subject.otherActive distribution networkses_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherPseudo-measurementses_ES
dc.subject.otherState estimationes_ES
dc.titleLearning-based state estimation in distribution systems with limited real-time measurementses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroEscuela de Ingenierías Industrialeses_ES
dc.identifier.doi10.1016/j.epsr.2024.111268
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional