JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Understanding the Impact of Branch Edit Features for the Automatic Prediction of Merge Conflict Resolutions.

    • Autor
      Aldndni, Waad; Servant-Cortés, Francisco JavierAutoridad Universidad de Málaga; Meng, Na
    • Fecha
      2024
    • Editorial/Editor
      ACM
    • Palabras clave
      Software - Diseño
    • Resumen
      Developers regularly have to resolve merge conflicts, i.e., two conflicting sets of changes to the same files in different branches, which can be tedious and error-prone. To resolve conflicts, developers typically: keep the local version (KL) or the remote version (KR) of the code. They also sometimes manually edit both versions into a single one (ME). However, most existing techniques only support merging the local and remote versions (the ME strategy). We recently proposed RPRedictor, a machine learning-based approach to support developers in choosing how to resolve a conflict (by KL, KR, or ME), by predicting their resolution strategy. In its original design, RPRedictor uses a set of Evolution History Features ( s) that capture: the magnitude of the changes in conflict, their evolution, and the experience of the developers involved. In this paper, we proposed and evaluated a new set of Branch Edit Features ( s), that capture the fine-grained edits that were performed on each branch of the conflict. We learned multiple lessons. First, s provided lower effectiveness (F-score) than the original s. Second, combining s with s still did not improve the effectiveness of s, it provided the same f-score. Third, the feature set that provided highest effectiveness in our experiments was the combination of with a subset of s that captures the number of insertions performed in the local branch, but this combination only improved s by 3 pp. f-score. Finally, our experiments also share the lesson that some feature sets provided higher C-score (i.e., the safety of the technique’s mistakes) as a trade-off for lower f-scores. This may be valued by developers and we believe that it should be studied in the future.
    • URI
      https://hdl.handle.net/10630/35533
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    2024-ICPC-4-published.pdf (334.3Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA