Mostrar el registro sencillo del ítem

dc.contributor.authorAldndni, Waad
dc.contributor.authorMeng, Na
dc.contributor.authorServant-Cortés, Francisco Javier 
dc.date.accessioned2024-12-12T09:46:53Z
dc.date.available2024-12-12T09:46:53Z
dc.date.issued2023
dc.identifier.citationWaad Aldndni, Na Meng, Francisco Servant, Automatic prediction of developers’ resolutions for software merge conflicts, Journal of Systems and Software, Volume 206, 2023, 111836, ISSN 0164-1212, DOI: https://doi.org/10.1016/j.jss.2023.111836es_ES
dc.identifier.urihttps://hdl.handle.net/10630/35607
dc.description.abstractIn collaborative software development, developers simultaneously work in parallel on different branches that they merge periodically. When edits from different branches textually overlap, conflicts may occur. Manually resolving conflicts can be tedious and error-prone. Researchers proposed tool support for conflict resolution, but these tools barely consider developers’ preferences. Conflicts can be resolved by: keeping the local version only KL, keeping the remote version only (KR), or manually editing them (ME). Recent studies show that developers resolved the majority of textual conflicts by KL or KR. Thus, we created a machine learning-based approach RPredictor to predict developers’ resolution strategy (KL, KR, or ME) given a merge conflict. We did large-scale experiments on the historical resolution of 74,861 conflicts. Our experiments show that RPredictor achieved 63% F-score for within-project prediction and 46% F-score for cross-project prediction. Compared with other classifiers, RPredictor provides the highest effectiveness when using a random forest (RF) classifier. Finally, we proposed a variant technique RPredictorv , which enables developers to customize its prediction conservativeness. For a highly conservative setting, RPredictorv achieved 34% effort saving while minimizing the risk of producing incorrect prediction labels.es_ES
dc.description.sponsorshipNSF CCF1845446, NSF CCF-2046403, URJC C01INVESDIST, SACM, AEI PID2022-14296OA-I00es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSoftware - Diseñoes_ES
dc.subject.otherSoftware mergees_ES
dc.subject.otherTextual conflictses_ES
dc.subject.otherSoftware conflict resolutiones_ES
dc.subject.otherMachine learninges_ES
dc.titleAutomatic Prediction of Developers’ Resolutions for Software Merge Conflictses_ES
dc.typejournal articlees_ES
dc.identifier.doi10.1016/j.jss.2023.111836
dc.type.hasVersionAMes_ES
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem