JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Identifying employee engagement drivers using multilayer perceptron classifier and sensitivity analysis

    • Autor
      Núñez-Sánchez, José ManuelAutoridad Universidad de Málaga; Molina-Gómez, JesúsAutoridad Universidad de Málaga; Mercade-Mele, PereAutoridad Universidad de Málaga; Fernández Miguélez, Sergio Manuel
    • Fecha
      2024-12-16
    • Editorial/Editor
      Springer Nature
    • Palabras clave
      Capacidad de trabajo - Evaluación; Gestión de personal
    • Resumen
      Employee engagement is increasingly important, as it can become a competitive advantage for companies, helping them increase productivity, attract talent and improve customer satisfaction. Numerous works have studied the drivers that encourage employee engagement and have developed models to identify them. However, the existing models have limitations, and the literature demands more research on the subject since the precision of the models still needs to improve. This paper presents a computational model that can estimate the drivers of employee engagement accurately. A sample of 205 Spanish employees was used, allowing us to consider a wide sectorial heterogeneity. Different methods have been applied to the sample under study to achieve a high-precision model, selecting drivers using the Multilayer Perceptron Classifier and quantifying the impact of the drivers with Sensitivity Analysis. The results obtained in this research present important implications for the managerial improvement of human resources departments by facilitating the design of strategies and policies that foster employee engagement, which significantly influences corporate results.
    • URI
      https://hdl.handle.net/10630/35835
    • DOI
      https://dx.doi.org/10.1007/s40821-024-00283-6
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Identifying employee engagement drivers using multilayer perceptron classifier and sensitivity analysis.pdf (1.481Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA