JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Three dimensional viscoelastic instabilities in a four-roll mill geometry at the Stokes limit.

    • Autor
      Gutiérrez-Castillo, PalomaAutoridad Universidad de Málaga; Kagel, Adam; Thomases, Becca
    • Fecha
      2020
    • Editorial/Editor
      American Institute of Physics
    • Palabras clave
      Stokes, Teorema de
    • Resumen
      Three-dimensional numerical simulations of viscoelastic fluids in the Stokes limit with a four-roll mill background force (extended to the third dimension). Both the Oldroyd-B model and FENE-P model of viscoelastic fluids were used. Different temporal behaviors were observed depending on the Weissenberg number (non-dimensional relaxation time), model, and initial conditions. Temporal dynamics evolve on long time scales and simulations were accelerated by using a Graphics Processing Unit (GPU). Previously, parameter explorations and long-time simulations in 3D were prohibitively expensive. For small Weissenberg number, all the solutions are constant in the third dimension, displaying strictly two-dimensional temporal evolutions. However, for sufficiently large Weissenberg number, three-dimensional instabilities were observed, creating complex temporal behaviors. In some of the cases, the instability that first emerges is two-dimensional (in the x; y plane), and then the solution develops an instability in the z-direction whereas in others the z instability comes first. Using a linear perturbation from a steady two-dimensional background solution, extended to three dimensions as constant in the third dimension, it is demonstrated that there is a linear instability for sufficiently large Weissenberg number, and possible mechanisms for this instability are discussed.
    • URI
      https://hdl.handle.net/10630/35894
    • DOI
      https://dx.doi.org/10.1063/1.5134927
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    023102_1_accepted_manuscript.pdf (39.13Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA