JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    E-Science workflow: A semantic approach for airborne pollen prediction

    • Autor
      Hurtado-Requena, Sandro JoséAutoridad Universidad de Málaga; Antequera-Gómez, María Luisa; Barba-González, CristóbalAutoridad Universidad de Málaga; Picornell Rodríguez, Antonio; Navas-Delgado, IsmaelAutoridad Universidad de Málaga
    • Fecha
      2024-01
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Polinosis
    • Resumen
      Allergic rhinitis has become a global health problem in recent decades because airborne pollen is a primary trigger of this respiratory disorder. Moreover, pollinosis can exacerbate the symptoms of asthma and favour respiratory infections. Seasonal pollen trends and climatic circumstances (such as temperature, precipitation, relative humidity, wind speed and direction, and other variables) can impact daily airborne pollen concentrations, influencing local pollen emission and dispersion. Because of that, pollen monitoring and prediction are becoming more relevant to the urban population and scientific interest is put into them. Due to such tasks’ high volume of data, scientists are starting to use computational tools like workflows to automate and speed up the process. Furthermore, using the expert scientific domain is critical for improving the analysis, allowing, among others, a better workflow configuration and data provenance. As semantic web technologies have been revealed as an essential means for knowledge representation, we implemented this workflow information as an ontology using formats like RDF(S) and OWL. Consequently, this paper provides a semantic-enhanced e-Science workflow based on the TITAN framework for pollen forecasting analysis using meteorological data. Furthermore, a catalogue of components is developed on the TITAN framework, which allows the creation of different workflow versions. Two case studies of pollen prediction were developed to test the implementation of the aforementioned methodologies. Both were elaborated with airborne pollen data obtained in the city of Málaga (Spain). Still, one was elaborated for Platanus pollen type (narrow annual main pollination period), while the other was done for Amaranthaceae pollen type (extensive annual main pollination period).
    • URI
      https://hdl.handle.net/10630/36267
    • DOI
      https://dx.doi.org/10.1016/j.knosys.2023.111230
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    e_Science_workflow__A_semantic_approach_for_airborne_pollen_prediction.pdf (3.605Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA