JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Joint Categorization of Objects and Rooms for Mobile Robots.

    • Autor
      Ruiz-Sarmiento, José RaúlAutoridad Universidad de Málaga; Galindo-Andrades, CiprianoAutoridad Universidad de Málaga; González-Jiménez, Antonio JavierAutoridad Universidad de Málaga
    • Fecha
      2015
    • Editorial/Editor
      IEEE
    • Palabras clave
      Robots móviles - Diseño y construcción
    • Resumen
      In general, the problems of objects' and rooms' categorizations for robotic applications have been addressed separately. The current trend is, however, towards a joint modelling of both issues in order to leverage their mutual contextual relations: object → room (e.g. the detection of a microwave indicates that the room is likely to be a kitchen), and room → object (e.g. if the robot is in a bathroom, it is probable to find a toilet). Probabilistic Graphical Models (PGMs) are typically employed to conveniently cope with such relations, relying on inference processes to hypothesize about objects' and rooms' categories. In this work we present a Conditional Random Field (CRF) model, a particular type of PGM, to jointly categorize objects and rooms from RGBD images exploiting object-object and object-room relations. The learning phase of the proposed CRF uses Human Knowledge (HK) to eliminate the necessity of gathering real training data. Concretely, HK is acquired through elicitation and codified into an ontology, which is exploited to effortless generate an arbitrary number of representative synthetic samples for training. The performance of the proposed CRF model has been assessed using the NYU2 dataset, achieving a success of ~ 70% categorizing both, objects and rooms.
    • URI
      https://hdl.handle.net/10630/36399
    • DOI
      https://dx.doi.org/10.1109/IROS.2015.7353720
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    2015 - IROS - Joint Categorization of Objects and Rooms for Mobile Robots.pdf (871.4Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA