JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Using ForeStereo and LIDAR data to assess fire and canopy structure-related risks in relict Abies pinsapo Boiss. forests

    • Autor
      Cortés-Molino, ÁlvaroAutoridad Universidad de Málaga; Aulló-Maestro, Isabel; Fernández-Luque, Ismael; Flores-Moya, AntonioAutoridad Universidad de Málaga; Carreira de la Fuente, José Antonio; Salvo-Tierra, Ángel EnriqueAutoridad Universidad de Málaga
    • Fecha
      2020
    • Editorial/Editor
      PEERJ INC
    • Palabras clave
      Incendios forestales - Prevención y control
    • Resumen
      In this study we combine information from aerial LIDAR and hemispherical images taken in the field with ForeStereo—a forest inventory device—to assess the vulnerability and to design conservation strategies for endangered Mediterranean fir forests based on the mapping of fire risk and canopy structure spatial variability. We focused on the largest continuous remnant population of the endangered tree species Abies pinsapo Boiss. spanning 252 ha in Sierra de las Nieves National Park (South Andalusia, Spain). We established 49 sampling plots over the study area. Stand structure variables were derived from ForeStereo device, a proximal sensing technology for tree diameter, height and crown dimensions and stand crown cover and basal area retrieval from stereoscopic hemispherical images photogrammetry. With this information, we developed regression models with airborne LIDAR data (spatial resolution of 0.5 points∙m−2). Thereafter, six fuel models were fitted to the plots according to the UCO40 classification criteria, and then the entire area was classified using the Nearest Neighbor algorithm on Sentinel imagery (overall accuracy of 0.56 and a KIA-Kappa Coefficient of 0.46). FlamMap software was used for fire simulation scenarios based on fuel models, stand structure, and terrain data. Besides the fire simulation, we analyzed canopy structure to assess the status and vulnerability of this fir population. The assessment shows a secondary growth forest that has an increasing presence of fuel models with the potential for high fire spread rate fire and burn probability. Our methodological approach has the potential to be integrated as a support tool for the adaptive management and conservation of A. pinsapo across its whole distribution area (<4,000 ha), as well as for other endangered circum-Mediterranean fir forests, as A. numidica de Lannoy and A. pinsapo marocana Trab. in North Africa.
    • Datos de investigación
      Cortés-Molino Á, Aulló-Maestro I, Fernandez-Luque I, Flores-Moya A, Carreira JA, Salvo AE. 2020. Using ForeStereo and LIDAR data to assess fire and canopy structure-related risks in relict Abies pinsapo Boiss. forests. PeerJ 8:e10158 DOI 10.7717/peerj.10158
    • URI
      https://hdl.handle.net/10630/36464
    • DOI
      https://dx.doi.org/DOI 10.7717/peerj.10158
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Art. 7 Artculo_final.pdf (29.40Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA