JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    InDM2: interactive dynamic multi-objective decision making using evolutionary algorithms

    • Autor
      Nebro-Urbaneja, Antonio JesúsAutoridad Universidad de Málaga; Ruiz-Mora, Ana BelénAutoridad Universidad de Málaga; Barba-González, CristóbalAutoridad Universidad de Málaga; García-Nieto, José ManuelAutoridad Universidad de Málaga; Luque-Gallego, MarianoAutoridad Universidad de Málaga; Aldana-Montes, José FranciscoAutoridad Universidad de Málaga
    • Fecha
      2018-05-24
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Computación evolutiva
    • Resumen
      Dynamic optimization problems involving two or more conflicting objectives appear in many real-world scenarios, and more cases are expected to appear in the near future with the increasing interest in the analysis of streaming data sources in the context of Big Data applications. However, approaches combining dynamic multi-objective optimization with preference articulation are still scarce. In this paper, we propose a new dynamic multi-objective optimization algorithm called InDM2 that allows the preferences of the decision maker (DM) to be incorporated into the search process. When solving a dynamic multi-objective optimization problem with InDM2, the DM can not only express her/his preferences by means of one or more reference points (which define the desired region of interest), but these points can be also modified interactively. InDM2 is enhanced with methods to graphically display the different approximations of the region of interest obtained during the optimization process. In this way, the DM is able to inspect and change, in optimization time, the desired region of interest according to the information displayed. We describe the main features of InDM2 and detail how it is implemented. Its performance is illustrated using both synthetic and real-world dynamic multi-objective optimization problems.
    • URI
      https://hdl.handle.net/10630/36558
    • DOI
      https://dx.doi.org/10.1016/j.swevo.2018.02.004
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    InDM2.pdf (1.664Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA