JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Deep Neural Network to Remove Motion Artifacts from Heart Rate Sensor Embedded on Handle Cane.

    • Autor
      Villalba-Bravo, Rafael; Ruiz Barroso, Paula; Castro, Francisco M.; Trujillo-León, AndrésAutoridad Universidad de Málaga; Guil-Mata, NicolásAutoridad Universidad de Málaga; Vidal-Verdú, FernandoAutoridad Universidad de Málaga
    • Fecha
      2024
    • Editorial/Editor
      IEEE
    • Palabras clave
      Biosensores; Ayudas técnicas para ancianos
    • Resumen
      Devices worn on the body that track physiological metrics, such as heart rate (HR) and skin conductance, have gained popularity and are typically found in items like smart-watches and bracelets. However, these measurements can be compromised by the movement of the device relative to the skin, which creates artifacts. For certain groups, such as the elderly, embedding sensors into daily-use items, like walking sticks, might offer better adherence. Nonetheless, the issue of motion artifacts becomes particularly challenging in these scenarios. This document presents a method based on a Deep Neural Network to compute the HR from a noisy signal registered by a sensor embedded in a cane. We evaluate our model in a novel dataset obtaining a mean absolute error of 9.81 ± 0.45 beats per minute, which results in a deviation of 10.75% that is in the order of the results obtained by common commercial smartwatches and bracelets.
    • URI
      https://hdl.handle.net/10630/36629
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    IEEE_Sensors_2024_Baston_Pulso-3.pdf (1.065Mb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA