Mostrar el registro sencillo del ítem

dc.contributor.authorVillalba-Bravo, Rafael
dc.contributor.authorRuiz Barroso, Paula
dc.contributor.authorCastro, Francisco M.
dc.contributor.authorTrujillo-León, Andrés 
dc.contributor.authorGuil-Mata, Nicolás 
dc.contributor.authorVidal-Verdú, Fernando 
dc.date.accessioned2025-01-21T11:00:10Z
dc.date.available2025-01-21T11:00:10Z
dc.date.issued2024
dc.identifier.citationR. Villalba-Bravo, P. Ruiz-Barroso, F. M. Castro, A. Truiillo-León, N. Guil and F. Vidal-Verdú, "Deep Neural Network to Remove Motion Artifacts from Heart Rate Sensor Embedded on Handle Cane," 2024 IEEE SENSORS, Kobe, Japan, 2024, pp. 1-4, doi: 10.1109/SENSORS60989.2024.10784567es_ES
dc.identifier.urihttps://hdl.handle.net/10630/36629
dc.descriptionhttps://conferences.ieeeauthorcenter.ieee.org/author-ethics/guidelines-and-policies/ (submitted)es_ES
dc.description.abstractDevices worn on the body that track physiological metrics, such as heart rate (HR) and skin conductance, have gained popularity and are typically found in items like smart-watches and bracelets. However, these measurements can be compromised by the movement of the device relative to the skin, which creates artifacts. For certain groups, such as the elderly, embedding sensors into daily-use items, like walking sticks, might offer better adherence. Nonetheless, the issue of motion artifacts becomes particularly challenging in these scenarios. This document presents a method based on a Deep Neural Network to compute the HR from a noisy signal registered by a sensor embedded in a cane. We evaluate our model in a novel dataset obtaining a mean absolute error of 9.81 ± 0.45 beats per minute, which results in a deviation of 10.75% that is in the order of the results obtained by common commercial smartwatches and bracelets.es_ES
dc.description.sponsorshipThis work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades and by the European ERDF program funds under contracts PID2021-1250910B-IOO and PID2022-1365750B-IOO.es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBiosensoreses_ES
dc.subjectAyudas técnicas para ancianoses_ES
dc.subject.otherHeart ratees_ES
dc.subject.otherTrackinges_ES
dc.subject.otherComputational modelinges_ES
dc.subject.otherArtificial neural networkses_ES
dc.subject.otherSkines_ES
dc.subject.otherReal-time systemses_ES
dc.subject.otherPhysiologyes_ES
dc.subject.otherSensorses_ES
dc.subject.otherOlder adultses_ES
dc.subject.otherMotion artifactses_ES
dc.subject.otherHR sensinges_ES
dc.subject.otherWearableses_ES
dc.subject.otherDeep neural networkses_ES
dc.titleDeep Neural Network to Remove Motion Artifacts from Heart Rate Sensor Embedded on Handle Cane.es_ES
dc.typeconference outputes_ES
dc.centroE.T.S.I. Informáticaes_ES
dc.relation.eventtitle2024 IEEE SENSORSes_ES
dc.relation.eventplaceKobe, Japónes_ES
dc.relation.eventdate20/10/2024es_ES
dc.departamentoElectrónica
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem