Mostrar el registro sencillo del ítem
EEG Database for musical genres detection.
dc.contributor | ATIC Research Group, Universidad de Málaga | es_ES |
dc.contributor.author | Ariza Cervera, Isaac | |
dc.contributor.author | Barbancho-Pérez, Ana María | |
dc.contributor.author | Tardón-García, Lorenzo José | |
dc.contributor.author | Barbancho-Pérez, Isabel | |
dc.date.accessioned | 2025-01-24T13:08:17Z | |
dc.date.available | 2025-01-24T13:08:17Z | |
dc.date.created | 2024 | |
dc.date.issued | 2025-01-24 | |
dc.identifier.uri | https://hdl.handle.net/10630/36947 | |
dc.description.abstract | This database is made up of EEG signals from 6 subjects listening to fragments of songs from different musical genres and their answers to the questions: did you know this song and do you like this song?. The musical genres chosen are: ballad, classic, metal and reggaeton. These signals have been captured with the BrainVision actiCHAMP-PLUS system and consist of a total of 64 EEG channels. The BrainVision Recorder software was used to store the signals. The stimulus presentation software used to design the experiment is Eprime 3. For more detailed information on this database, the capture system used and its applications, see [1]. If these data are used for any publication, the following paper must be cited: [1] Isaac Ariza, Ana M. Barbancho, Lorenzo J. Tardón, Isabel Barbancho, Energy-based features and bi-LSTM neural network for EEG-based music and voice classification. Neural Comput & Applic 36, 791–802 (2024). https://doi.org/10.1007/s00521-023-09061-3 | es_ES |
dc.description.sponsorship | Funding for open access publishing: Universidad Málaga/CBUA. This publication is part of Project PID2021-123207NB-I00, funded by MCIN/AEI/10.13039/501100011033/FEDER, UE. This work was partially funded by Junta de Andalucía, Proyectos de I+D+i, in the framework of Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020), under Project No. PY20_00237. Funding for open access charge: Universidad de Málaga/CBUA. This work was done at Universidad de Málaga, Campus de Excelencia Internacional Andalucia Tech. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Universidad de Málaga | es_ES |
dc.relation.isreferencedby | Isaac Ariza, Ana M. Barbancho, Lorenzo J. Tardón, Isabel Barbancho, Energy-based features and bi-LSTM neural network for EEG-based music and voice classification. Neural Comput & Applic 36, 791–802 (2024). https://doi.org/10.1007/s00521-023-09061-3 | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Electroencefalografía | es_ES |
dc.subject | Estimulación cerebral | es_ES |
dc.subject | Formas musicales | es_ES |
dc.subject.other | Electroencephalogram (EEG) | es_ES |
dc.subject.other | Musical genres detection | es_ES |
dc.subject.other | EEG classification | es_ES |
dc.subject.other | EEG signals | es_ES |
dc.subject.other | Brain reaction to different auditori stimulus | es_ES |
dc.title | EEG Database for musical genres detection. | es_ES |
dc.title.alternative | Base de datos EEG para detección de géneros musicales. | es_ES |
dc.type | info:eu-repo/semantics/dataset | es_ES |
dc.centro | E.T.S.I. Telecomunicación | es_ES |
dc.identifier.doi | 10.24310/riuma.36947 | |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.publication.year | 2025 | |
dc.version | 1.0 | es_ES |
dc.departamento | Ingeniería de Comunicaciones |