Mostrar el registro sencillo del ítem

dc.contributor.authorDelgado-Escaño, Rubén
dc.contributor.authorCastro, Francisco M.
dc.contributor.authorRamos-Cózar, Julián 
dc.contributor.authorMarín Jiménez, Manuel Jesús
dc.contributor.authorGuil-Mata, Nicolás 
dc.date.accessioned2025-01-28T09:02:02Z
dc.date.available2025-01-28T09:02:02Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/10630/37142
dc.descriptionArtículo en acceso abierto.es_ES
dc.description.abstractPeople identification using gait information (i.e., the way a person walks) obtained from inertial sensors is a robust approach that can be used in multiple situations where vision-based systems are not applicable. Typically, previous methods use hand-crafted features or deep learning approaches with pre-processed features as input. In contrast, we present a new deep learning-based end-to-end approach that employs raw inertial data as input. By this way, our approach is able to automatically learn the best representations without any constraint introduced by the pre-processed features. Moreover, we study the fusion of information from multiple inertial sensors and multi-task learning from multiple labels per sample. Our proposal is experimentally validated on the challenging dataset OU-ISIR, which is the largest available dataset for gait recognition using inertial information. After conducting an extensive set of experiments to obtain the best hyper-parameters, our approach is able to achieve state-of-the-art results. Specifically, we improve both the identification accuracy (from 83.8% to 94.8%) and the authentication equal-error-rate (from 5.6 to 1.1). Our experimental results suggest that: 1) the use of hand-crafted features is not necessary for this task as deep learning approaches using raw data achieve better results; 2) the fusion of information from multiple sensors allows to improve the results; and, 3) multi-task learning is able to produce a single model that obtains similar or even better results in multiple tasks than the corresponding models trained for a single task.es_ES
dc.description.sponsorshipThis work has been funded by project TIC-1692 (Junta de Andalucía), TIN2016-80920R (Spanish Ministry of Science and Technology) and a research initiation Grant (no. #75) from the University of Malaga (Campus de Excelencia Internacional Andalucía Tech). The authors gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this research.es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAprendizaje automáticoes_ES
dc.subject.otherInertial sensorses_ES
dc.subject.otherCNNes_ES
dc.subject.otherFusiones_ES
dc.subject.otherMulti-taskes_ES
dc.subject.otherGait recognitiones_ES
dc.titleAn End-to-End Multi-Task and Fusion CNN for Inertial-Based Gait Recognition.es_ES
dc.typejournal articlees_ES
dc.centroE.T.S.I. Informáticaes_ES
dc.identifier.doi10.1109/ACCESS.2018.2886899
dc.type.hasVersionVoRes_ES
dc.departamentoArquitectura de Computadores
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem