Mostrar el registro sencillo del ítem

dc.contributor.authorCampos, Cristian
dc.contributor.authorAsenjo, Rafael
dc.contributor.authorNavarro, Ángeles
dc.date.accessioned2025-01-29T12:23:36Z
dc.date.available2025-01-29T12:23:36Z
dc.date.issued2025-01-24
dc.identifier.citationCampos, Cristian, Rafael Asenjo, and Angeles Navarro. “Exploring Data Flow Design and Vectorization with oneAPI for Streaming Applications on CPU+GPU: Exploring Data Flow Design and Vectorization with oneAPI for Streaming.” The Journal of supercomputing 81.2 (2025)es_ES
dc.identifier.urihttps://hdl.handle.net/10630/37292
dc.description.abstractn recent times, oneAPI has emerged as a competitive framework to optimize streaming applications on heterogeneous CPU+GPU architectures, since it provides portability and performance thanks to the SYCL programming language and effi-cient parallel libraries as oneTBB. However, this approach opens up a wealth of implementations alternatives in this type of applications: from how to design the data flow to how to exploit data parallelism. Choosing the best alternative is not triv-ial, so in this paper we analyze them and contribute with an analytical model based on queue theory that helps in the on-line selection of the alternative that maximizes the throughput and the occupancy of the CPU and GPU compute units. We explore the design space offered by: a) different APIs to define the data flow (paral-lel_pipeline and Flow Graph from oneTBB, and SYCL events from SYCL); b) alternative kernel implementations to express data parallelism (SYCL, AVX and std::simd); and c) the mapping of the kernels into the available comput-ing resources (CPU cores and GPU). The results show that the std::simd library can be 1.54x faster, 3% more energy efficient, and requires 7.36x less programming effort than AVX, and that implementations that enable asynchronous offloading of tasks to the devices as those based on SYCL events and Flow Graph APIs outper-form the other APIs, being up to 1.10x faster and up to 1.18x more energy efficient.es_ES
dc.description.sponsorshipFunding for open access publishing: Universidad de Málaga/CBUA.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectComputación heterogéneaes_ES
dc.subject.otherStreaming applicationses_ES
dc.subject.otherHeterogeneous computing es_ES
dc.subject.otherAnalytical model es_ES
dc.subject.otherQueue theory es_ES
dc.subject.otherCPU+GPU es_ES
dc.subject.otheroneAPIes_ES
dc.subject.otherSYCLes_ES
dc.titleExploring data flow design and vectorization with oneAPI for streaming applications on CPU+GPUes_ES
dc.typejournal articlees_ES
dc.centroE.T.S.I. Informáticaes_ES
dc.identifier.doihttps://doi.org/10.1007/s11227-024-06891-3
dc.type.hasVersionVoRes_ES
dc.departamentoArquitectura de Computadores
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem