JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Scenario-Agnostic Localization System for Cellular Network Based on Feature Engineering

    • Autor
      Luo-Chen, Hao Qiang; Khatib, Emil Jatib; Sethi, Deepak; Cruz, Eduardo; Arostegui, Asier; Martín, Raúl; Barco-Moreno, RaquelAutoridad Universidad de Málaga
    • Fecha
      2024-08
    • Editorial/Editor
      IEEE
    • Palabras clave
      Sistemas de comunicaciones móviles
    • Resumen
      In the last few years, location-aware services and network management have driven the demand for user location estimation in mobile networks. Nevertheless, the location obtained from user terminals is not usually accessible to mobile operators. In addition, available cell Key Performance Indicators (KPI) vary highly from network to network, and only a few of them are always enabled widely. Currently prevalent Machine Learning (ML) based solutions have achieved high precision, but they are bound to a trained scenario, restricting their application to new areas. We propose a method for creating scenario-agnostic prediction models which solves these problems through applying feature engineering, over a small set of easily obtainable KPIs, applicable for any ML method. Finally, the performance of the proposed method is demonstrated using real network datasets.
    • URI
      https://hdl.handle.net/10630/37538
    • DOI
      https://dx.doi.org/10.1109/OJCOMS.2024.3440186
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Scenario-Agnostic_Localization_System_for_Cellular_Network_Based_on_Feature_Engineering.pdf (4.129Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA