JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    The Role of Artificial Intelligence in Project-Based Learning: Teacher Perceptions and Pedagogical Implications.

    • Autor
      Ruiz Viruel, Sergio; Sánchez-Rivas, EnriqueAutoridad Universidad de Málaga; Ruiz-Palmero, JulioAutoridad Universidad de Málaga
    • Fecha
      2025-01-26
    • Editorial/Editor
      MDPI
    • Palabras clave
      Tecnología educativa; Inteligencia artificial; Pedagogía
    • Resumen
      This study is based on the development of a design focused on underlining what artificial intelligence can achieve to bring value to learning quality especially when implementing active methodologies, such as project-based learning (PBL). This study analyzed the perceptions of AI-integrated PBL versus non-AI-integrated PBL among teachers in primary, secondary, and higher education. Conducted with a sample of teachers (n = 300), this study investigated perceived effectiveness, the AI-powered personalization of learning, and motivation. A Student’s t-test, as well as normality, homogeneity of variance, and Cohen’s d tests, revealed that AI-enhanced PBL is rated significantly higher than regular PBL without AI, with a Cohen’s d effect size of 1.30, signifying a large impact. These findings underpin the development of an optimized AI-driven PBL model, particularly within both the prototype production and evaluation phases, providing greater autonomy, responsive feedback, and adaptive personalization, all towards advancing a more effective AI-supported pedagogical model of teaching.
    • URI
      https://hdl.handle.net/10630/37907
    • DOI
      https://dx.doi.org/10.3390/educsci15020150
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    education-15-00150-v3.pdf (458.3Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA