JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Efficiency and Productivity for Decision Making on Low-Power Heterogeneous CPU+GPU SoCs.

    • Autor
      Constantinescu, Denisa-Andreea; González-Navarro, María ÁngelesAutoridad Universidad de Málaga; Corbera-Peña, Francisco JavierAutoridad Universidad de Málaga; Fernández-Madrigal, Juan AntonioAutoridad Universidad de Málaga; Asenjo-Plaza, RafaelAutoridad Universidad de Málaga
    • Fecha
      2021-01
    • Editorial/Editor
      Springer Nature
    • Palabras clave
      Arquitectura de ordenadores
    • Resumen
      Markov decision processes provide a formal framework for a computer to make decisions autonomously and intelligently when the effects of its actions are not deterministic. This formalism has had tremendous success in many disciplines; however, its implementation on platforms with scarce computing capabilities and power, as it happens in robotics or autonomous driving, is still limited. To solve this computationally complex problem efficiently under these constraints, high-performance accelerator hardware and parallelized software come to the rescue. In particular, in this work, we evaluate off-line-tuned static and dynamic versus adaptive heterogeneous scheduling strategies for executing value iteration—a core procedure in many decision-making methods, such as reinforcement learning and task planning—on a low-power heterogeneous CPU+GPU SoC that only uses 10–15 W. Our experimental results show that by using CPU+GPU heterogeneous strategies, the computation time and energy required are considerably reduced. They can be up to 54% (61%) faster and 57% (65%) more energy-efficient with respect to multicore—TBB—(or GPU-only—OpenCL—) implementation. Additionally, we also explore the impact of increasing the abstraction level of the programming model to ease the programming effort. To that end, we compare the TBB+OpenCL vs. the TBB+oneAPI implementations of our heterogeneous schedulers, observing that oneAPI versions result in up 5x to less programming effort and only incur in 3–8% of overhead if the scheduling strategy is selected carefully.
    • URI
      https://hdl.handle.net/10630/38036
    • DOI
      https://dx.doi.org/10.1007/s11227-020-03257-3
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    JoS2019_Final.pdf (1010.Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA