JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Monitoring workers exposure to COVID19 and others occupational risks using BLE beacons.

    • Autor
      Gómez-de-Gabriel, Jesús ManuelAutoridad Universidad de Málaga; Rey-Merchán, María del Carmen; López-Arquillos, AntonioAutoridad Universidad de Málaga; Fernández-Madrigal, Juan AntonioAutoridad Universidad de Málaga
    • Fecha
      2022-12-15
    • Editorial/Editor
      Wiley
    • Palabras clave
      Tecnología bluetooth
    • Resumen
      The COVID-19 pandemic has become a public health priority during 2020. Social safety distance is one of the most effective strategies to stop the spreading of the virus, as it reduces the dose of infectious particles that a person can receive. Real-time location systems (RTLS) based on ultrawideband (UWB), radio frequency identification (RFID), Global Position System (GPS), or Bluetooth Low Energy (BLE) can help keep workers safe at the workplace. The aim of the current paper is to develop a dosimeter proposal to monitor and control the distance and exposure time between workers based on BLE beacon technology considering viral load. Our proposal is based on a set of BLE beacons and safety distance estimation by filtering RSSI measurements with a Gaussian extended Kalman filter. According to the estimated proximity values and the exposure time, a finite state machine will alarm when the worker receives the maximum dose defined by health authorities. The proposed system can be applied to prevent any risk that can be eliminated or reduced controlling distances and/or exposition time of the worker to the occupational risk. The proposal is robust, is inexpensive, and respects the privacy of workers, and its accuracy is higher than that of existing smartphone applications. In future pandemic situations, the system can be easily updated to the safety distance and viral particle dose related with the new risk agent. The system can protect from additional risk incorporating beacons on the extra risk identified such as thermal, noise, or radiation.
    • URI
      https://hdl.handle.net/10630/38042
    • DOI
      https://dx.doi.org/10.1155/2022/7254225
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    paper_paraCV.pdf (899.4Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA