JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    URSUS_LST: URban SUStainability intelligent system for predicting the impact of urban green infrastructure on land surface temperatures

    • Autor
      Rodríguez-Gómez, Francisco; Del-Campo-Ávila, JoséAutoridad Universidad de Málaga; Pérez-Urrestarazu, Luis; López-Rodríguez, DomingoAutoridad Universidad de Málaga
    • Fecha
      2025
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Soporte lógico libre; Urbanismo sostenible
    • Resumen
      Mitigating Urban Heat Island (UHI) effects has become a challenge to improve urban sustainability. The simulation tool URSUS_LST has been developed to allow urban planners to estimate how the addition of different green infrastructure elements would affect temperature. To achieve this, a new methodology was defined based on data mining, geospatial image processing and the knowledge of experts in the domain that predicts the Land Surface Temperature (LST) of any location within a city. It consists of a first data mining phase in which the real LST and the different urban elements of the nearby environment are considered: buildings, vegetation and water bodies. In a second phase, different regression models are induced to predict LST. Additionally, considering the most accurate models, the relevant attributes and their relationships are identified. A real application of the tool in the city of Malaga (Spain) has been used as an example of its usefulness.
    • URI
      https://hdl.handle.net/10630/38471
    • DOI
      https://dx.doi.org/10.1016/J.ENVSOFT.2025.106364
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S1364815225000489-main.pdf (2.544Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA