JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Generate more than one child in your co-evolutionary semi-supervised learning GAN.

    • Autor
      Sedeño Guerrero, Francisco José; Toutouh-el-Alamin, JamalAutoridad Universidad de Málaga; Chicano-García, José-FranciscoAutoridad Universidad de Málaga
    • Fecha
      2025-04
    • Editorial/Editor
      Springer Nature
    • Palabras clave
      Redes neuronales artificiales; Aprendizaje automático (Inteligencia artificial)
    • Resumen
      Generative Adversarial Networks (GANs) are very useful methods to address semi-supervised learning (SSL) datasets, thanks to their ability to generate samples similar to real data. This approach, called SSL-GAN has attracted many researchers in the last decade. Evolutionary algorithms have been used to guide the evolution and training of SSL-GANs with great success. In particular, several co-evolutionary approaches have been applied where the two networks of a GAN (the generator and the discriminator) are evolved in separate populations. The co-evolutionary approaches published to date assume some spatial structure of the populations, based on the ideas of cellular evolutionary algorithms. They also create one single individual per generation and follow a generational replacement strategy in the evolution. In this paper, we re-consider those algorithmic design decisions and propose a new co-evolutionary approach, called Co-evolutionary Elitist SSL-GAN (CE-SSLGAN), with panmictic population, elitist replacement, and more than one individual in the offspring. We evaluate the performance of our proposed method using three standard benchmark datasets. The results show that creating more than one offspring per population and using elitism improves the results in comparison with a classical SSL-GAN.
    • URI
      https://hdl.handle.net/10630/38496
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    SSL_GANs_Evostar_EML_2025.pdfEmbargado hasta: 2026-04-17 (1.360Mb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA