JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Enhanced generation of automatically labelled image segmentation datasets by advanced style interpreter deep architectures.

    • Autor
      Pacheco dos Santos Lima Junior, Marcos Sergio; López-Rubio, EzequielAutoridad Universidad de Málaga; Ortiz-de-Lazcano-Lobato, Juan MiguelAutoridad Universidad de Málaga; Fernández-Rodríguez, Jose David
    • Fecha
      2025
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Redes neuronales artificiales; Aprendizaje automático (Inteligencia artificial)
    • Resumen
      Large image datasets with annotated pixel-level semantics are necessary to train and evaluate supervised deep-learning models. These datasets are very expensive in terms of the human effort required to build them. Still, recent developments such as DatasetGAN open the possibility of leveraging generative systems to automatically synthesise massive amounts of images along with pixel-level information. This work analyses DatasetGAN and proposes a novel architecture that utilises the semantic information of neighbouring pixels to achieve significantly better performance. Additionally, the overfitting observed in the original architecture is thoroughly investigated, and modifications are proposed to mitigate it. Furthermore, the implementation has been redesigned to greatly reduce the memory requirements of DatasetGAN, and a comprehensive study of the impact of the number of classes in the segmentation task is presented.
    • URI
      https://hdl.handle.net/10630/38505
    • DOI
      https://dx.doi.org/10.1016/j.patrec.2025.04.021
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Enhanced generation of automatically labelled image segmentation.pdf (3.901Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA