JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    On the participation of energy storage systems in reserve markets using Decision Focused Learning

    • Autor
      Paredes-Parrilla, Ángel; Toubeau, Jean-François; Aguado-Sánchez, José AntonioAutoridad Universidad de Málaga; Vallée, François
    • Fecha
      2025-03-13
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Ingeniería eléctrica; Energía - Almacenamiento
    • Resumen
      Battery Energy Storage Systems (BESSs) are particularly well-suited to deepen the decarbonisation of reserve markets, traditionally dominated by non-renewable generators. BESSs operators often rely on Predict-Then-Optimise (PTO) methods to participate in these markets, which focus on forecasting market conditions without directly considering the impact of subsequent decisions during training. Recently, learning models have evolved to incorporate decision outcomes during training, known as Decision Focused Learning (DFL) methodologies, which have the potential to increase market benefits. This paper introduces a DFL approach that integrates the decision-making process of BESSs when participating in reserve markets into the training of their predictive models. By expressing the optimisation problem as a primal–dual mapping using the Karush–Kuhn–Tucker (KKT) conditions, the proposed DFL method enables the regressor to learn from the BESS’s decisions, refining its predictions based on observed outcomes, improving decision accuracy and market performance. Results show that the proposed DFL approach outperforms traditional PTO methods, with up to a 9.5% increase in profits for a case study based on the Belgian secondary reserve market, highlighting its effectiveness in managing the complexities of dynamic market conditions.
    • URI
      https://hdl.handle.net/10630/38516
    • DOI
      https://dx.doi.org/10.1016/j.segan.2025.101677
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S2352467725000591-main.pdf (2.681Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA