JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    An enhanced heuristic framework for solving the Rank Pricing Problem

    • Autor
      Jiménez-Cordero, María AsunciónAutoridad Universidad de Málaga; Pineda-Morente, SalvadorAutoridad Universidad de Málaga; Morales-González, Juan MiguelAutoridad Universidad de Málaga
    • Fecha
      2025-03-12
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Algoritmos genéticos; Heurística; Optimización combinatoria; Precios
    • Resumen
      The Rank Pricing Problem (RPP) is a challenging bilevel optimization problem with binary variables whose objective is to determine the optimal pricing strategy for a set of products to maximize the total benefit, given that customer preferences influence the price for each product. Traditional methods for solving RPP are based on exact approaches which may be computationally expensive. In contrast, this paper presents a novel heuristic approach that takes advantage of the structure of the problem to obtain good solutions. The proposed approach consists of two phases. Firstly, a standard heuristic is applied to get a pricing strategy. In our case, we choose to use the Variable Neighborhood Search (VNS), and the genetic algorithm. Both methodologies are very popular for their effectiveness in solving combinatorial optimization problems. The solution obtained after running these algorithms is improved in a second phase, where four different local searches are applied. Such local searches use the information of the RPP to get better solutions, that is, there is no need to solve new optimization problems. Even though our methodology does not have optimality guarantees, our computational experiments show that it outperforms Mixed Integer Program solvers regarding solution quality and computational burden.
    • URI
      https://hdl.handle.net/10630/38534
    • DOI
      https://dx.doi.org/10.1016/j.eswa.2025.127122
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S0957417425007444-main.pdf (1.767Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA