JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    FADE: Forecasting for anomaly detection on ECG

    • Autor
      Ruiz Barroso, Paula; Castro, Francisco M.; Miranda-Calero, José Ángel; Constantinescu, Denisa-Andreea; Atienza, David A.; Guil-Mata, NicolásAutoridad Universidad de Málaga
    • Fecha
      2025-04-22
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Aprendizaje automático (Inteligencia artificial); Arritmia - Pronóstico; Pulso cardíaco; Electrocardiografía
    • Resumen
      Background and Objective: Cardiovascular diseases, a leading cause of noncommunicable disease-related deaths, require early and accurate detection to improve patient outcomes. Taking advantage of advances in machine learning and deep learning, multiple approaches have been proposed in the literature to address the challenge of detecting ECG anomalies. Typically, these methods are based on the manual interpretation of ECG signals, which is time consuming and depends on the expertise of healthcare professionals. The objective of this work is to propose a deep learning system, FADE, designed for normal ECG forecasting and anomaly detection, which reduces the need for extensive labeled datasets and manual interpretation. Methods: We propose FADE, a deep learning system designed for normal ECG forecasting, trained in a self-supervised manner with a novel morphological inspired loss function, that can be used for anomaly detection. Unlike conventional models that learn from labeled anomalous ECG waveforms, our approach predicts the future of normal ECG signals, thus avoiding the need for extensive labeled datasets. Using a novel distance function to compare forecasted ECG signals with actual sensor data, our method effectively identifies cardiac anomalies. Additionally, this approach can be adapted to new contexts (e.g., different sensors, patients, etc.) through domain adaptation techniques. To evaluate our proposal, we performed a set of experiments using two publicly available datasets: MIT-BIH NSR and MIT-BIH Arrythmia. Results: The results demonstrate that our system achieves an average accuracy of 83.84% in anomaly detection, while correctly classifying normal ECG signals with an accuracy of 85.46%.
    • URI
      https://hdl.handle.net/10630/38545
    • DOI
      https://dx.doi.org/10.1016/j.cmpb.2025.108780
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S016926072500197X-main.pdf (2.604Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA