JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Empirical study of human pose representations for gait recognition

    • Autor
      Cubero Torres, Nicolás; Castro, Francisco M.; Ramos-Cózar, JuliánAutoridad Universidad de Málaga; Guil-Mata, NicolásAutoridad Universidad de Málaga; Marín-Jiménez, Manuel José
    • Fecha
      2025-02-28
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Biometría; Aprendizaje automático (Inteligencia artificial); Mecánica humana
    • Resumen
      Gait recognition has gained attention for its ability to identify individuals from afar. Current state-of-the-art approaches predominantly utilize visual information, such as silhouettes, or a combination of visual data and basic body pose information, including skeleton joint coordinates. However, the role of human pose in gait recognition is still underexplored, often leading to poorer results compared to visual approaches. In this work, we propose a novel hierarchical limb-based representation that enhances the depiction of body pose and can be applied to various pose descriptors. Our representation consists of three hierarchical levels: full body, body limbs (arms and legs), and middle limbs (forearms, lower arms, thighs, and shins). This structure enriches the gait description of the overall pose by incorporating the specific movements of each limb. Particularly, we investigate the application of our hierarchical arrangement using two different rich pose descriptors: heatmaps derived from 2D body skeletons and a dense representation obtained from pixel-wise estimation of body pose (i.e DensePose). Furthermore, we introduce the PoseGaitGL family of models to better leverage the features derived from our pose representations. By employing our hierarchical pose representations, the proposed model achieves state-of-the-art results in pose-based gait recognition. Thus, the hierarchical heatmap-based and hierarchical DensePose representations attain Rank-1 accuracy of 82.2% and 92.0%, respectively, on the cross-view setup of CASIA-B, and 99.3% and 99.8%, respectively, on TUM-GAID, establishing a new benchmark for pose-based methods. Source code is available at https://github.com/Nico-Cubero/PoseGaitGL
    • URI
      https://hdl.handle.net/10630/38556
    • DOI
      https://dx.doi.org/10.1016/j.eswa.2025.126946
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S0957417425005688-main.pdf (2.172Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA