JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    High performance inference of gait recognition models on embedded systems.

    • Autor
      Ruiz Barroso, Paula; Castro, Francisco M.; Delgado-Escaño, Rubén; Ramos-Cózar, JuliánAutoridad Universidad de Málaga; Guil-Mata, NicolásAutoridad Universidad de Málaga
    • Fecha
      2022
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Biomecánica; Aprendizaje automático
    • Resumen
      Edge computing is gaining importance in the realm of Deep Learning, particularly after powerful devices such as recent heterogeneous embedded systems have demonstrated remarkable skills for accelerating their challenging computational requirements. In this work, we evaluate different hardware and software optimizations applied to state-of-the-art gait recognition approaches deployed on two Jetson devices with very different hardware capabilities. Specifically, we have selected three models with different characteristics in order to provide an in-depth deployment evaluation. This way, a 2D convolution-based model allows us to evaluate devices performance when a huge number of parameters must be managed. A model based on 3D convolutions is deployed to study devices capability to perform these kinds of operations. Finally, a novel model with a small number of parameters but with a huge number of activations is also evaluated. Obtained results show that different hardware and software optimizations are able to improve up to energy consumption and execution time w.r.t. baseline deployment, depending on the model and target device.1
    • URI
      https://hdl.handle.net/10630/38580
    • DOI
      https://dx.doi.org/10.1016/j.suscom.2022.100814
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    high_performance_gait.pdf (1.617Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA