JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Enhancing cross-encoders using knowledge graph hierarchy for medical entity linking in zero- and few-shot scenarios

    • Autor
      Gallego, Fernando; Ruas, Pedro; Couto, Francisco M.; Veredas-Navarro, Francisco JavierAutoridad Universidad de Málaga
    • Fecha
      2025-03-01
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Sistemas expertos; Representación del conocimiento
    • Resumen
      Medical Entity Linking (MEL) is a common task in natural language processing, focusing on the normalization of recognized entities from clinical texts using large knowledge bases (KBs). This task presents significant challenges, specially when working with electronic health records that often lack annotated clinical notes, even in languages like English. The difficulty increases in few-shot or zero-shot scenarios, where models must operate with minimal or no training data, a common issue when dealing with less-documented languages such as Spanish. Existing solutions that combine contrastive learning with external sources, like the Unified Medical Language System (UMLS), have shown competitive results. However, most of these methods focus on individual concepts from the KBs, ignoring relationships such as synonymy or hierarchical links between concepts. In this paper, we propose leveraging these relationships to enrich the training triplets used for contrastive learning, improving performance in MEL tasks. Specifically, we fine-tune several BERT-based cross-encoders using enriched triplets on three clinical corpora in Spanish : DisTEMIST, MedProcNER, and SympTEMIST. Our approach addresses the complexity of real-world data, where unseen mentions and concepts are frequent. The results show a notable improvement in lower top-𝑘� accuracies, surpassing the state-of-the-art by up to 5.5 percentage points for unseen mentions and by up to 5.9 points for unseen concepts. This improvement reduces the number of candidate concepts required for cross-encoders, enabling more efficient semi-automatic annotation and decreasing human effort. Additionally, our findings underscore the importance of leveraging not only the concept-level information in KBs but also the relationships between those concepts.
    • URI
      https://hdl.handle.net/10630/38624
    • DOI
      https://dx.doi.org/10.1016/j.knosys.2025.113211
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S0950705125002588-main.pdf (1.079Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA