Mostrar el registro sencillo del ítem

dc.contributor.authorMauerer, Ingrid Doris
dc.contributor.authorPößnecker, Wolfgang
dc.contributor.authorThurner, Paul W.
dc.contributor.authorTutz, Gerhard
dc.date.accessioned2025-05-16T08:48:17Z
dc.date.available2025-05-16T08:48:17Z
dc.date.issued2015-10-06
dc.identifier.citationMauerer, I., Pößnecker, W., Thurner, P. W., & Tutz, G. (2015). "Modeling Electoral Choices in Multiparty Systems with High-Dimensional Data: A Regularized Selection of Parameters Using the Lasso Approach." Journal of Choice Modelling 16: 23-42. doi: 10.1016/j.jocm.2015.09.004es_ES
dc.identifier.urihttps://hdl.handle.net/10630/38648
dc.descriptionhttps://openpolicyfinder.jisc.ac.uk/id/publication/33276es_ES
dc.description.abstractThe increased usage of discrete choice models in the analysis of multiparty elections faces one severe challenge: the proliferation of parameters, resulting in high-dimensional and difficult-to-interpret models. For example, the application of a multinomial logit model in a party system with J parties results in maximally J−1 parameters for chooser-specific attributes (e.g., sex and age). For the specification of alternative-specific attributes (usually: positions on issues and issue distances), maximally J parameters for each political issue can be estimated. Thus, a model of party choice with five parties based on three political issues and ten voter attributes already produces 59 possible coefficients. As soon as we allow for interaction effects to detect segment-specific reactions to issues, the situation is even aggravated. In order to systematically and efficiently identify relevant predictors in voting models, we derive and use Lasso-type regularized parameter selection techniques that take into account both individual- and alternative-specific variables. Most importantly, our new algorithm can handle for the first time the alternative-wise specification of the attributes of alternatives. Applying the specifically adjusted Lasso method to the 2009 German Parliamentary Election, we demonstrate that our approach massively reduces the models' complexity and simplifies their interpretation. Lasso-penalization clearly outperforms the simple ML estimator. The results are illustrated by innovative visualization methods, the so-called effect star plots.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.subjectElecciones - Modelos matemáticoses_ES
dc.subjectAnálisis de regresiónes_ES
dc.subjectEstadísticaes_ES
dc.subject.otherSelección de parámetroses_ES
dc.subject.otherLassoes_ES
dc.subject.otherModelo logit multinomiales_ES
dc.subject.otherElecciones multipartidistases_ES
dc.titleModeling Electoral Choices in Multiparty Systems with High-Dimensional Data: A Regularized Selection of Parameters Using the Lasso Approach.es_ES
dc.typejournal articlees_ES
dc.centroFacultad de Ciencias Económicas y Empresarialeses_ES
dc.identifier.doi10.1016/j.jocm.2015.09.004
dc.type.hasVersionAMes_ES
dc.departamentoTeoría e Historia Económicaes_ES
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem