JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Inequalities on tent spaces and closed range integration operators on spaces of average radial integrability

    • Autor
      Aguilar-Hernández, Tanausú; Galanopoulos, Petros
    • Fecha
      2025-06-12
    • Editorial/Editor
      Springer Nature
    • Palabras clave
      Integrales; Coordenadas curvilíneas; Matemáticas aplicadas
    • Resumen
      We deal with a reverse Carleson measure inequality for the tent spaces of analytic functions in the unit disc D of the complex plane. The tent spaces of measurable functions were introduced by Coifman, Meyer and Stein. Let 1 ≤ p, q < ∞ and consider the measurable set G ⊆ D. We prove a necessary and sufficient condition on G in order to exist a constant K > 0 such that T β (ξ )∩G | f (z)| p dm(z) 1 − |z| q/p |dξ | ≥ K T 1/2(ξ ) | f (z)| p dm(z) 1 − |z| q/p |dξ |, for any analytic function f in D with the property, the right term of the inequality above is finite. Here T stands for the unit circle, dm(z) is the area Lebesgue measure in D and β(ξ ) is the cone-like region β(ξ ) = {z ∈ D |z| < β} ∪ |z|<β [z, ξ ), β ∈ (0, 1), with vertex at ξ ∈ T. This work extends the study of D. Luecking on Bergman spaces to the analytic tent spaces. We apply this result in order to characterize the closed range property of the integration operator Tg( f )(z) = z 0 f (w)g (w) dw, z ∈ D, when acting on the average radial integrability spaces. The Hardy and the Bergman spaces form part of this family. The function g is a fixed analytic function in the unit disc. The operator Tg is known as Pommerenke operator. Moreover, for the first time, we provide examples of symbols g that introduce or not a closed range operator Tg in these spaces.
    • URI
      https://hdl.handle.net/10630/38698
    • DOI
      https://dx.doi.org/10.1007/s13398-025-01733-0
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    s13398-025-01733-0.pdf (408.6Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA