JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Tesis doctorales
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Tesis doctorales
    • Ver ítem

    Integrative Signal Processing and Explainable Artificial Intelligence for Functional Connectivity Modeling in Language Disorders.

    • Autor
      Formoso Trigo, Marco Antonio
    • Director/es
      Ortiz-García, AndrésAutoridad Universidad de Málaga
    • Fecha
      2025
    • Fecha de lectura
      2025-04-28
    • Editorial/Editor
      UMA Editorial
    • Palabras clave
      Procesado de señales - Tesis doctorales; Lenguaje - Trastornos; Electroencefalografía; Electrodiagnóstico
    • Resumen
      This thesis explores the integration of advanced signal processing techniques and Explainable Artificial Intelligence (XAI) methodologies to enhance the understanding and modeling of functional connectivity of EEG signals in the context of language disorders, particularly Developmental Dyslexia (DD). Developmental dyslexia is a neurobiological condition affecting reading skills linked to neural synchronization deficits, making it a prime candidate for innovative diagnostic approaches. The approach uses non-invasive brain recording techniques, mainly Electroencephalogram (EEG), to assess connectivity through Cross Frequency Coupling (CFC) metrics. A methodological framework is established, combining classical signal processing with the design of Deep Learning (DL) architectures, including Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). These models are designed to capture complex patterns in EEG data while maintaining interpretability through XAI techniques like SHapley Additive exPlanations (SHAP) or attention layers in the network architecture. These methods are also used to evaluate the lateralization effect in language processing. Key contributions include the development of novel deep learning architectures tailored for Phase-To-Amplitude Coupling (PAC) estimation, classification methods for differential diagnosis, and explainable tools to aid clinicians in understanding EEG based connectivity metrics. The proposed models demonstrate improved accuracy in identifying dyslexic neural patterns, highlighting the role of neural synchronization deficits in language processing anomalies. Moreover, different entrainment profiles to auditory stimuli were found when studying local and long-range neural coupling by means of CFC. The findings advance the field of neurodiagnostics by offering robust, interpretable AI-driven methods to study functional connectivity.
    • URI
      https://hdl.handle.net/10630/38707
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    TD_FORMOSO_TRIGO_Marco.pdf (9.845Mb)
    Colecciones
    • Tesis doctorales

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA