Mostrar el registro sencillo del ítem

dc.contributor.advisorOrtiz-García, Andrés 
dc.contributor.authorFormoso Trigo, Marco Antonio
dc.date.accessioned2025-05-22T10:42:51Z
dc.date.available2025-05-22T10:42:51Z
dc.date.created2025
dc.date.issued2025
dc.date.submitted2025-04-28
dc.identifier.urihttps://hdl.handle.net/10630/38707
dc.descriptionThis thesis sets the stage for early diagnosis and individualized interventions for language disorders, with implications that extend to other neurological conditions.es_ES
dc.description.abstractThis thesis explores the integration of advanced signal processing techniques and Explainable Artificial Intelligence (XAI) methodologies to enhance the understanding and modeling of functional connectivity of EEG signals in the context of language disorders, particularly Developmental Dyslexia (DD). Developmental dyslexia is a neurobiological condition affecting reading skills linked to neural synchronization deficits, making it a prime candidate for innovative diagnostic approaches. The approach uses non-invasive brain recording techniques, mainly Electroencephalogram (EEG), to assess connectivity through Cross Frequency Coupling (CFC) metrics. A methodological framework is established, combining classical signal processing with the design of Deep Learning (DL) architectures, including Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). These models are designed to capture complex patterns in EEG data while maintaining interpretability through XAI techniques like SHapley Additive exPlanations (SHAP) or attention layers in the network architecture. These methods are also used to evaluate the lateralization effect in language processing. Key contributions include the development of novel deep learning architectures tailored for Phase-To-Amplitude Coupling (PAC) estimation, classification methods for differential diagnosis, and explainable tools to aid clinicians in understanding EEG based connectivity metrics. The proposed models demonstrate improved accuracy in identifying dyslexic neural patterns, highlighting the role of neural synchronization deficits in language processing anomalies. Moreover, different entrainment profiles to auditory stimuli were found when studying local and long-range neural coupling by means of CFC. The findings advance the field of neurodiagnostics by offering robust, interpretable AI-driven methods to study functional connectivity.es_ES
dc.language.isoenges_ES
dc.publisherUMA Editoriales_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectProcesado de señales - Tesis doctoraleses_ES
dc.subjectLenguaje - Trastornoses_ES
dc.subjectElectroencefalografíaes_ES
dc.subjectElectrodiagnósticoes_ES
dc.subject.otherEeges_ES
dc.subject.otherXaies_ES
dc.subject.otherConnectivtyes_ES
dc.subject.otherDles_ES
dc.subject.otherNeurodiagnosticses_ES
dc.titleIntegrative Signal Processing and Explainable Artificial Intelligence for Functional Connectivity Modeling in Language Disorders.es_ES
dc.typedoctoral thesises_ES
dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.departamentoIngeniería de Comunicacioneses_ES
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem