JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Energy-Efficient Fall-Detection System Using LoRa and Hybrid Algorithms

    • Autor
      Villa, Manny; Casilari-Pérez, EduardoAutoridad Universidad de Málaga
    • Fecha
      2025-05-12
    • Editorial/Editor
      MDPI
    • Palabras clave
      Aprendizaje automático (Inteligencia artificial); Innovaciones tecnológicas; Caídas en ancianos
    • Resumen
      Wearable fall-detection systems have received significant research attention during the last years. Fall detection in wearable devices presents key challenges, particularly in balancing high precision with low power consumption—both of which are essential for the continuous monitoring of older adults and individuals with reduced mobility. This study introduces a hybrid system that integrates a threshold-based model for preliminary detection with a deep learning-based approach that combines a CNN (Convolutional Neural Network) for spatial feature extraction with a LSTM (Long Short-Term Memory) model for temporal pattern recognition, aimed at improving classification accuracy. LoRa technology enables long-range, energy-efficient communication, ensuring real-time monitoring across diverse environments. The wearable device operates in ultra-low-power mode, capturing acceleration data at 20 Hz and transmitting a 4-s window when a predefined threshold in the acceleration magnitude is exceeded. The CNN-LSTM classifier refines event identification, significantly reducing false positives. This design extends operational autonomy to 178 h of continuous monitoring. The experimental and systematic evaluation of the prototype achieved a 96.67% detection rate (sensitivity) for simulated falls and a 100% specificity in classifying conventional Activities of Daily Living as non-falls. These results establish the system as a robust and scalable solution, effectively addressing limitations in power efficiency, connectivity, and detection accuracy while enhancing user safety and quality of life.
    • URI
      https://hdl.handle.net/10630/38808
    • DOI
      https://dx.doi.org/10.3390/biomimetics10050313
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    2025_Energy-Efficient Fall-Detection System Using LoRa and Hybrid Algorithms.pdf (4.498Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA