Mostrar el registro sencillo del ítem

dc.contributor.authorVilla, Manny
dc.contributor.authorCasilari-Pérez, Eduardo 
dc.date.accessioned2025-06-03T06:56:35Z
dc.date.available2025-06-03T06:56:35Z
dc.date.issued2025-05-12
dc.identifier.citationVilla, M.; Casilari, E. Energy-Efficient Fall-Detection System Using LoRa and Hybrid Algorithms. Biomimetics 2025, 10, 313. https://doi.org/10.3390/biomimetics10050313es_ES
dc.identifier.urihttps://hdl.handle.net/10630/38808
dc.description.abstractWearable fall-detection systems have received significant research attention during the last years. Fall detection in wearable devices presents key challenges, particularly in balancing high precision with low power consumption—both of which are essential for the continuous monitoring of older adults and individuals with reduced mobility. This study introduces a hybrid system that integrates a threshold-based model for preliminary detection with a deep learning-based approach that combines a CNN (Convolutional Neural Network) for spatial feature extraction with a LSTM (Long Short-Term Memory) model for temporal pattern recognition, aimed at improving classification accuracy. LoRa technology enables long-range, energy-efficient communication, ensuring real-time monitoring across diverse environments. The wearable device operates in ultra-low-power mode, capturing acceleration data at 20 Hz and transmitting a 4-s window when a predefined threshold in the acceleration magnitude is exceeded. The CNN-LSTM classifier refines event identification, significantly reducing false positives. This design extends operational autonomy to 178 h of continuous monitoring. The experimental and systematic evaluation of the prototype achieved a 96.67% detection rate (sensitivity) for simulated falls and a 100% specificity in classifying conventional Activities of Daily Living as non-falls. These results establish the system as a robust and scalable solution, effectively addressing limitations in power efficiency, connectivity, and detection accuracy while enhancing user safety and quality of life.es_ES
dc.description.sponsorshipSpanish Ministry of Science, Innovation, and Universities (MCIN/AEI/10.13039/501100011033)es_ES
dc.description.sponsorshipNextGenerationEU/PRTR Funds (grant ED2021-130456B-I00)es_ES
dc.description.sponsorshipUniversidad de Investigación y Desarrollo (UDI, Bucaramanga, Colombia)es_ES
dc.description.sponsorshipUniversidad de Málaga, Campus de Excelencia Internacional Andaluciaes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectInnovaciones tecnológicases_ES
dc.subjectCaídas en ancianoses_ES
dc.subject.otherFall detectiones_ES
dc.subject.otherWearable deviceses_ES
dc.subject.otherAccelerometeres_ES
dc.subject.otherCNN-LSTMes_ES
dc.subject.otherEnergy efficiencyes_ES
dc.subject.otherLoRa communicationses_ES
dc.subject.otherLPWAN Technologyes_ES
dc.titleEnergy-Efficient Fall-Detection System Using LoRa and Hybrid Algorithmses_ES
dc.typejournal articlees_ES
dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.identifier.doi10.3390/biomimetics10050313
dc.type.hasVersionVoRes_ES
dc.departamentoTecnología Electrónicaes_ES
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem