JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Real-time multiple people gait recognition in the edge

    • Autor
      Ruiz Barroso, Paula; González-Linares, José MaríaAutoridad Universidad de Málaga; Castro Payán, Francisco Manuel; Guil-Mata, NicolásAutoridad Universidad de Málaga
    • Fecha
      2025
    • Editorial/Editor
      Springer Nature
    • Palabras clave
      Biometría; Reconocimiento óptico de formas (Informática)
    • Resumen
      Deploying deep learning models on edge devices offers advantages in terms of data security and communication latency. However, optimizing these models to achieve fast computing speeds without sacrificing accuracy can be challenging, especially in video surveillance applications where real-time processing is crucial. In this study, we investigate the deployment of gait recognition models as a multi-objective selection problem in which we seek to simultaneously minimize several objectives, such as latency and energy consumption, while maintaining accuracy. The decision space of a problem comprises all models that can be built by varying parameters, such as the size of the model, the operating frequency of the device, and the precision of the operations. From this problem definition, a subset of Pareto optimal models can be selected to be deployed on the target device. We conducted experiments with two different gait recognition models on NVIDIA Jetson Orin Nano and Jetson AGX Orin to explore their decision spaces. In addition, we investigated different strategies to increase the throughput of the deployed models by taking advantage of batching and concurrent execution. Together, these techniques allowed us to design real-time solutions for gait recognition in scenarios with multiple subjects. These solutions can process between 42 and 188 simultaneous subjects at 25 inferences per second with an energy consumption ranging from 6.31 to 9.71 mJ per inference, depending on the device and the deployed model.
    • URI
      https://hdl.handle.net/10630/38833
    • DOI
      https://dx.doi.org/10.1038/s41598-025-02351-x
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    s41598-025-02351-x.pdf (2.657Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA