JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Exhaustive biclustering driven by self-learning evolutionary approach for biomedical data

    • Autor
      Segura Ortiz, Adrián; José-García, Adán; Jourdan, Laetitia; García-Nieto, José ManuelAutoridad Universidad de Málaga
    • Fecha
      2025-05-29
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Computación evolutiva; Biomedicina - Investigación; Biomedicina - Innovaciones tecnológicas
    • Resumen
      Background and Objective: Biclustering is a key data analysis technique that identifies submatrices with coherent patterns, widely applied in biomedical fields such as gene co-expression analysis. Despite its importance, in the context of evolutionary algorithms, traditional partial representations in biclustering algorithms face significant limitations, such as redundancy and limited adaptability to domain-specific objectives. This study aims to overcome these challenges by introducing MOEBA-BIO, a new evolutionary biclustering framework for biomedical data. Methods: MOEBA-BIO is designed as a flexible framework based on the evolutionary metaheuristics scheme. It includes a self-configurator that dynamically adjusts the algorithm’s objectives and parameters based on contextual domain knowledge. The framework employs a complete representation, enabling the integration of new domain-specific objectives and the self-determination of the number of biclusters, addressing the limitations of traditional representations. The source code is available through the following git repository: https://github.com/AdrianSeguraOrtiz/MOEBA-BIO. Results: Experimental results demonstrate that MOEBA-BIO overcomes the limitations of classical partial representations. Furthermore, its application to simulated and real-world gene expression datasets highlights its ability to specialize in specific biological domains, improving accuracy and functional enrichment of biclusters compared to other state-of-the-art techniques. Conclusions: MOEBA-BIO represents a significant advancement in biclustering applied to bioinformatics. Its innovative framework, combining adaptability, self-configuration, and integration of domain-specific objectives, addresses the main limitations of traditional methods and offers robust solutions for complex biomedical datasets.
    • URI
      https://hdl.handle.net/10630/38898
    • DOI
      https://dx.doi.org/10.1016/j.cmpb.2025.108846
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S0169260725002639-main.pdf (3.782Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA