JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Datos de Investigación
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Datos de Investigación
    • Ver ítem

    Dataset for: Texture Detection with Feature Extraction on Embedded FPGA

    • Autor
      Lora Rivera, Raúl; Oballe-Peinado, ÓscarAutoridad Universidad de Málaga; Vidal-Verdú, FernandoAutoridad Universidad de Málaga
    • Fecha
      2023
    • Editorial/Editor
      IEEE
    • Palabras clave
      Detectores; Electrónica; Fourier, Transformaciones de
    • Resumen
      A feature extraction algorithm for texture detection oriented to its implementation on embedded electronics based on a Field-Programmable Gate Array (FPGA) is proposed in this paper. Local pre-processing with smart tactile sensors can help to improve dexterity in artificial hands. Simplicity is the goal in order to achieve a hardware-friendly strategy that can be replicated and integrated with another circuitry. This is interesting, considering that tactile sensors are arrays and FPGAs are capable of parallel execution. The proposal was tested with a custom smart tactile sensor mounted on a Cartesian robot to explore different textures. A comparison with a common feature extraction approach based on the fast Fourier Transform (FFT) computation was also made. In addition, the whole procedure is implemented on a System on Chip (SoC) with the feature extraction on the embedded FPGA and a k-means classifier on an ARM core. The proposed algorithm obtains the spatial frequency components of the tactile signal but not their power. Therefore, some information is lost with respect to that provided by the FFT. Nevertheless, an 89.17% accuracy of the proposed algorithm is obtained versus 91.4% with the FFT when twelve different textures are considered, including complex and fabric textures. There is a noticeable saving in power and hardware resources. In addition, since the size of the feature vector is much smaller, data traffic and memory usage is much lower, and the classifier can be simpler.
    • Referenciado por
      R. Lora-Rivera, Ó. Oballe-Peinado, and F. Vidal-Verdú, “Texture Detection With Feature Extraction on Embedded FPGA,” IEEE Sens. J., vol. 23, no. 11, pp. 12093–12104, Jun. 2023, https://doi.org/10.1109/JSEN.2023.3268794
      https://hdl.handle.net/10630/32887
    • URI
      https://hdl.handle.net/10630/39118
    • DOI
      https://dx.doi.org/10.24310/riuma.39118
    • Acceso a los datos de investigación
      https://dx.doi.org/10.21227/9958-np83
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Texture_Detection_Dataset.zip (13.41Mb)
    README.txt (1.638Kb)
    Colecciones
    • Datos de Investigación

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA