JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Cerebral lateralization assessment: an explainable deep learning approach with channel attention mechanism

    • Autor
      Formoso, Marco A.; Arco, Juan E.; Ortiz-García, AndrésAutoridad Universidad de Málaga; Gan, John Q.; Rodríguez-Rodríguez, I.
    • Fecha
      2025-06-25
    • Editorial/Editor
      IEEE Xplore
    • Palabras clave
      Electroencefalografía; Cerebro - Localización de funciones; Aprendizaje automático (Inteligencia artificial); Dislexia
    • Resumen
      In recent years, cross-frequency coupling (CFC) has emerged as a valuable tool in the study of a wide range of cognitive processes due to the strong evidence of its functional role in neural computation and communication. CFC computed from electroencephalography (EEG) signals provides powerful information for detecting certain neurological conditions associated with atypical cerebral lateralization. The use of deep learning (DL) in this context offers several advantages, including improved scalability and adaptability to individual variability. However, it presents several significant challenges related to the limited availability of labelled samples and the high-dimensional and noisy nature of EEG data, which can lead to overfitting, poor generalization, and temporal and spatial variability between subjects. In this work, we propose a novel deep learning approach to reveal lateralization patterns based on inter-hemispheric functional differences via CFC. To overcome the challenges associated to the use of DL in this context, we propose the use of synthetic signals for pre-training the neural network that computes a specific type of CFC, phase-amplitude coupling (PAC), and a symmetric architecture for evaluating inter-hemispheric differences. Finally, our model incorporates a custom attention layer designed to learn the most relevant information across different EEG channels and its relative importance, further enhancing its ability to detect subtle hemispheric differences and providing the necessary explainability for clinical applications. The results demonstrate a good classification performance (AUC up to 0.85) in assessing lateralization, providing explainable insights into the mechanisms of the disorder. This may aid in early detection and provide a better understanding of the neural basis associated with this condition.
    • URI
      https://hdl.handle.net/10630/39171
    • DOI
      https://dx.doi.org/10.1109/JBHI.2025.3583038
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Cerebral_lateralization_assessment_an_explainable_deep_learning_approach_with_channel_attention_mechanism.pdf (4.003Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA