JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Real-Time FTM-based Victim Positioning System Using Heterogeneous Robots in Remote and Outdoor Scenarios.

    • Autor
      Bravo-Arrabal, Juan; Álvarez-Merino, Carlos Simón; Toscano-Moreno, Manuel; Serón-Barba, JavierAutoridad Universidad de Málaga; Fernández-Lozano, Juan JesúsAutoridad Universidad de Málaga; Gómez-Ruiz, José AntonioAutoridad Universidad de Málaga; Khatib, Emil Jatib; Barco-Moreno, RaquelAutoridad Universidad de Málaga; García-Cerezo, Alfonso JoséAutoridad Universidad de Málaga
    • Fecha
      2025-05-14
    • Editorial/Editor
      IEEE
    • Palabras clave
      Robótica; Robots autónomos; Operaciones de búsqueda y rescate; Redes de sensores inalámbricas; Vehículos teledirigidos; Informática en la nube
    • Resumen
      Accurate victim localization in Remote, Outdoor, Unstructured, and Disaster (ROUD) scenarios remains a significant challenge due to limited infrastructure, complex terrains, and time constraints inherent in Search and Rescue (SAR) operations. This article introduces an innovative real-time positioning system that leverages Fine Time Measurement (FTM), a feature of the IEEE 802.11mc amendment, to detect WiFi-enabled devices typically carried by potential victims. The system integrates a Hybrid Wireless Sensor Network (H-WSN) composed of static and mobile anchors mounted on Uncrewed Ground and Aerial Vehicles (UGVs and UAVs), within a Robot Operating System (ROS)-based architecture. A centralized Feedback Information System (FIS) processes real-time RTT data from the field, executes a multilateration algorithm, and provides live geolocation updates to SAR coordinators. The system was validated during a large-scale SAR drill, successfully locating two types of victims—a semi-hidden surface victim and a buried victim—within a 2000m2 area in under 7 minutes, without any filtering or post-processing. The maximum positioning error was 22.87m for the buried victim and 17.14m for the surface one. The complete system, including source code, dataset, and a containerized environment, is openly available to support reproducibility and further research, highlighting the potential of robotic and wireless technologies to enhance disaster response through accurate, real-time localization in complex environments.
    • URI
      https://hdl.handle.net/10630/39238
    • DOI
      https://dx.doi.org/10.1109/ACCESS.2025.3570203
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Real-Time_FTM-Based_Victim_Positioning_System_Using_Heterogeneous_Robots_in_Remote_and_Outdoor_Scenarios.pdf (2.934Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA