JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ingeniería Química - (IQ)
    • IQ - Contribuciones a congresos científicos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ingeniería Química - (IQ)
    • IQ - Contribuciones a congresos científicos
    • Ver ítem

    Methanol dehydration on carbon-based acid catalysts

    • Autor
      Valero-Romero, María José; Calvo-Muñoz, Elisa Mª; Ruiz-Rosas, Ramiro RafaelAutoridad Universidad de Málaga; Rodriguez-Mirasol, JoseAutoridad Universidad de Málaga; Cordero, TomásAutoridad Universidad de Málaga
    • Fecha
      2013-09-16
    • Editorial/Editor
      XXXIV Reunión Bienal de la Real Sociedad Española de Química
    • Palabras clave
      Carbón activado; Catalizadores
    • Resumen
      Methanol dehydration to produce dimethyl ether (DME) is an interesting process for the chemical industry since DME is an important intermediate and a promising clean alternative fuel for diesel engines. Pure or modified γ-aluminas (γ-Al2O3) and zeolites are often used as catalysts for this reaction. However, these materials usually yield non desirable hydrocarbons and undergo fast deactivation. In this work, we study the catalytic conversion of methanol over an acid carbon catalyst obtained by chemical activation of olive stone with H3PO4. A significant amount of phosphorus remains over the catalyst surface after the activation process, mostly in form of C-O-PO3 and C-PO3 groups, which provide the carbon a relatively high surface acidity and oxidation resistance. Methanol decomposition on this catalyst yields selectivities to DME higher than 82% at 623K and methanol conversion of 34%, under the operating conditions studied. The activated carbon catalytic activity and stability, under inert and oxidant atmospheres, as well as different regeneration procedures, were studied. In the absence of oxygen, the catalyst suffers a progressive deactivation by coke deposition on the active acid sites (Fig. 1). The presence of oxygen modifies the carbon surface chemistry, probably through oxygen spillover on the catalyst surface, where the availability of labile oxygen avoids catalyst deactivation. A reaction mechanism has been proposed where methanol dehydration seems to proceed through an Eley-Rideal mechanism, which assumes the adsorption of water and oxygen spillover on the acid active sites, avoiding coke deposition.
    • URI
      http://hdl.handle.net/10630/5903
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    IQ-CalvoAbstract Bienal Química Santander 2013.pdf (295.2Kb)
    Colecciones
    • IQ - Contribuciones a congresos científicos

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA