• Connectivity by geodesics on a class of globally hyperbolic spacetimes 

      Bartolo, Rosella (2016-04-14)
      During the past years there has been a considerable amount of research related to the problem of geodesic connectedness of Lorentzian manifolds. This topic has wide applications in Physics, but for mathematicians its ...
    • Engaños ópticos y artificios perspectivos 

      López Vílchez, Inmaculada (2014-03-27)
      Título de la conferencia: "Engaños ópticos y artificios perspectivos" La conferencia incide en las relaciones que las disciplinas del Arte y la Ciencia han mantenido históricamente a través de la Geometría, tomando como ...
    • Geometric assumptions and variational tools in Lorentzian geometry 

      Candela, Anna Maria (2014-10-02)
      During the past years there has been a considerable amount of research related to the problem of geodesic connectedness of Lorentzian manifolds. In particular, some geometric sufficient conditions have been introduced so ...
    • Geometries from structurable algebras and inner ideals 

      Meulewaeter, Jeroen (2020-02-12)
      Se estudian ciertos tipos de geometrias en algebras estructurables via sus ideales internos abelianos.
    • KV. Cohomology and some applications 

      Ferdinand, Ngakeu (2020-02-24)
      Two versions of the KV-cohomology are presented and some algebraic and geometrical applications are given. We will see some applications to stochastic manifold. As a consequence, we can apply these ideas in Lorentzian ...
    • Rigid singularity theorems in Lorentzian Geometry 

      Costa e Silva, Ivan P. (2014-10-02)
      The importance of the singularity theorems in Lorentzian Geometry, which give su cient conditions on a spacetime entailing the incompleteness of its null or timelike geodesics, is well known. But equally important is to ...
    • Superficies mínimas: viejos problemas y nuevos avances 

      Pérez Muñoz, Joaquín (2018-10-18)
      Haremos un recorrido por los principales problemas abiertos de la teoría clásica de superficies mínimas en el espacio euclídeo tridimensional, y cuáles son los últimos resultados en este campo.