JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Matemática Aplicada - (MA)
    • MA - Contribuciones a congresos científicos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Matemática Aplicada - (MA)
    • MA - Contribuciones a congresos científicos
    • Ver ítem

    Advanced techniques to compute improper integrals using a CAS

    • Autor
      Aguilera-Venegas, GabrielAutoridad Universidad de Málaga; Galán-García, José LuisAutoridad Universidad de Málaga; Galán-García, María ÁngelesAutoridad Universidad de Málaga; Padilla-Dominguez, Yolanda CarmenAutoridad Universidad de Málaga; Rodriguez-Cielos, PedroAutoridad Universidad de Málaga; Rodríguez-Cielos, Ricardo
    • Fecha
      2014-07-16
    • Palabras clave
      Fourier, Transformaciones de; Laplace, Transformación de
    • Resumen
      Let us consider the following types of improper integrals: $$ \int_0^\infty f(t)\:{\rm d}t \qquad ; \qquad \int_{-\infty}^0 f(t)\:{\rm d}t \qquad {\rm and} \qquad \int_{-\infty}^\infty f(t)\:{\rm d}t $$ \medskip Let $F$ be an antiderivative of $f$. The basic approach to compute such integrals involves the following computations: \medskip \begin{eqnarray*} \int_0^\infty f(t)\:{\rm d}t & = & \lim_{m\to\infty} \int_0^m f(t)\:{\rm d}t = \lim_{m\to\infty} \big(F(m)-F(0)\big) \\ \\ \int_{-\infty}^0 f(t)\:{\rm d}t & = & \lim_{m\to-\infty} \int_m^0 f(t)\:{\rm d}t = \lim_{m\to-\infty} \big(F(0)-F(m)\big) \\ \\ \int_{-\infty}^\infty f(t)\:{\rm d}t & = & \int_{-\infty}^0 f(t)\:{\rm d}t + \int_0^\infty f(t)\:{\rm d}t \qquad \mbox{or, in case of convergence,} \\ \\ \int_{-\infty}^\infty f(t)\:{\rm d}t & = & \lim_{m\to\infty} \int_{-m}^m f(t)\:{\rm d}t = \lim_{m\to\infty} \big(F(m)-F(-m)\big) \qquad \mbox{(Cauchy principal value)} \end{eqnarray*} \medskip \noindent But, what happens if an antiderivative $F$ for $f$ or the above limits do not exist? \medskip \noindent For example, for \quad $\displaystyle\int_0^\infty\frac{{\rm sin}(at)}{t}\:{\rm d}t$ \quad ; \quad $\displaystyle\int_0^\infty\frac{{\rm cos}(at)-{\rm cos}(bt)}{t}\:{\rm d}t$ \quad {\rm or} \quad $\displaystyle\int_{-\infty}^\infty\frac{{\rm cos}(at)}{t^2+1}\:{\rm d}t$ \qquad the antiderivatives can not be computed. Hence, the above procedures cannot be used for these examples. \medskip In this work we will deal with advance techniques to compute this kind of improper integrals using a {\sc Cas}. Laplace and Fourier transforms or Residue Theorem in Complex Analysis are some advance techniques which can be used for this matter. \medskip We will introduce the file \textbf{\tt ImproperIntegrals.mth}, developed in {\sc Derive} 6, which deals with such computations. \medskip Some {\sc Cas} use different rules for computing integrations. For example {\sc Rubi} system, a {\bf ru}le-{\bf b}ased {\bf i}ntegrator developed by Albert Rich (see {\tt http://www.apmaths.uwo.ca/\~{ }arich/}), is a very powerful system for computing integrals using rules. We will be able to develop new rules schemes for some improper integrals using {\tt ImproperIntegrals.mth}. These new rules can extend the types of improper integrals that a {\sc Cas} can compute.
    • URI
      http://hdl.handle.net/10630/7850
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    ImproperIntegrals-Presentation.pdf (293.8Kb)
    Colecciones
    • MA - Contribuciones a congresos científicos

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA