JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Lenguajes y Ciencias de la Computación - (LCC)
    • LCC - Contribuciones a congresos científicos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Lenguajes y Ciencias de la Computación - (LCC)
    • LCC - Contribuciones a congresos científicos
    • Ver ítem

    Towards Approximate Model Transformations

    • Autor
      Troya-Castilla, JavierAutoridad Universidad de Málaga; Wimmer, Manuel; Vallecillo-Moreno, Antonio JesusAutoridad Universidad de Málaga; Burgueño-Caballero, LolaAutoridad Universidad de Málaga
    • Palabras clave
      Modelos, Teoría de
    • Resumen
      As the size and complexity of models grow, there is a need to count on novel mechanisms and tools for transforming them. This is required, e.g., when model transformations need to provide target models without having access to the complete source models or in really short time—as it happens, e.g., with streaming models—or with very large models for which the transformation algorithms become too slow to be of practical use if the complete population of a model is investigated. In this paper we introduce Approximate Model Transformations, which aim at producing target models that are accurate enough to provide meaningful and useful results in an efficient way, but without having to be fully correct. So to speak, this kind of transformations treats accuracy for execution performance. In particular, we redefine the traditional OCL operators used to query models (e.g., allInstances, select, collect, etc.) by adopting sampling techniques and analyse the accuracy of approximate model transformations results.
    • URI
      http://hdl.handle.net/10630/8185
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    AMT.pdf (230.8Kb)
    Colecciones
    • LCC - Contribuciones a congresos científicos

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA