JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Lenguajes y Ciencias de la Computación - (LCC)
    • LCC - Contribuciones a congresos científicos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Lenguajes y Ciencias de la Computación - (LCC)
    • LCC - Contribuciones a congresos científicos
    • Ver ítem

    Comparative analysis of classical multi-objective evolutionary algorithms and seeding strategies for pairwise testing of Software Product Lines

    • Autor
      Lopez-Herrejon, Roberto E.; Ferrer-Urbano, Francisco JavierAutoridad Universidad de Málaga; Chicano, FranciscoAutoridad Universidad de Málaga; Egyed, Alexander; Alba-Torres, EnriqueAutoridad Universidad de Málaga
    • Fecha
      2014-10-06
    • Palabras clave
      Computación evolutiva
    • Resumen
      Software Product Lines (SPLs) are families of related software products, each with its own set of feature combinations. Their commonly large number of products poses a unique set of challenges for software testing as it might not be technologically or economically feasible to test of all them individually. SPL pairwise testing aims at selecting a set of products to test such that all possible combinations of two features are covered by at least one selected product. Most approaches for SPL pairwise testing have focused on achieving full coverage of all pairwise feature combinations with the minimum number of products to test. Though useful in many contexts, this single-objective perspective does not reflect the prevailing scenario where software engineers do face trade-offs between the objectives of maximizing the coverage or minimizing the number of products to test. In contrast and to address this need, our work is the first to propose a classical multi-objective formalisation where both objectives are equally important. In this paper, we study the application to SPL pairwise testing of four classical multi-objective evolutionary algorithms. We developed three seeding strategies — techniques that leverage problem domain knowledge — and measured their performance impact on a large and diverse corpus of case studies using two well-known multi-objective quality measures. Our study identifies the performance differences among the algorithms and corroborates that the more domain knowledge leveraged the better the search results. Our findings enable software engineers to select not just one solution (as in the case of single-objective techniques) but instead to select from an array of test suite possibilities the one that best matches the economical and technological constraints of their testing context.
    • URI
      http://hdl.handle.net/10630/8188
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    cec2014.pdf (347.6Kb)
    Colecciones
    • LCC - Contribuciones a congresos científicos

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA