JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ingeniería de Sistemas y Automática - (ISA)
    • ISA - Contribuciones a congresos científicos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ingeniería de Sistemas y Automática - (ISA)
    • ISA - Contribuciones a congresos científicos
    • Ver ítem

    LEGO© Mindstorms NXT and Q-Learning: a teaching approach for robotics in engineering

    • Autor
      Martínez-Tenor, Ángel; Fernández-Madrigal, Juan AntonioAutoridad Universidad de Málaga; Cruz-Martin, Ana MariaAutoridad Universidad de Málaga
    • Fecha
      2014-11-19
    • Palabras clave
      Robótica
    • Resumen
      Robotics has become a common subject in many engineering degrees and postgraduate programs. Although at undergraduate levels the students are introduced to basic theoretical concepts and tools, at postgraduate courses more complex topics have to be covered. One of those advanced subjects is Cognitive Robotics, which covers aspects like automatic symbolic reasoning, decision-making, task planning or machine learning. In particular, Reinforcement Learning (RL) is a machine learning and decision-making methodology that does not require a model of the environment where the robot operates, overcoming this limitation by making observations. In order to get the greatest educational benefit, RL theory should be complemented with some hands-on RL task that uses a real robot, so students get a complete vision of the learning problem, as well as of the issues that arise when dealing with a physical robotic platform. There are several RL techniques that can be studied in such a subject; we have chosen Q-learning, since is a simple, effective and well-known RL algorithm. In this paper we present a minimalist implementation of the Q-learning method for a Lego Mindstorms NXT mobile robot, focused on simplicity and applicability, and flexible enough to be adapted to several tasks. Starting from a simple wandering problem, we first design an off-line model of the learning process in which the Q-learning parameters are studied. After that, we implement the algorithm on the robot, gradually enlarging the number of states-actions of the problem. The final result of this work is a teaching framework for developing practical activities regarding Q-learning in our Robotics subjects, which will improve our teaching.
    • URI
      http://hdl.handle.net/10630/8441
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    ICERI.pdf (3.073Mb)
    iceri_qlearning.PDF (582.3Kb)
    Colecciones
    • ISA - Contribuciones a congresos científicos

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA