JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Matemática Aplicada - (MA)
    • MA - Conferencias Científicas
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Matemática Aplicada - (MA)
    • MA - Conferencias Científicas
    • Ver ítem

    Neural networks as nonlinear dynamical systems

    • Autor
      Danciu, Daniela
    • Fecha
      2014-11-20
    • Palabras clave
      Redes neuronales (Informática)
    • Resumen
      The Recurrent Neural Networks (RNNs) represent an important class of bio-inspired learning machines belonging to the field of Artificial Intelligence. Due to the cyclic interconnections between the artificial neurons and of the activation functions, RNNs are nonlinear dynamical systems. From the point of view of the field of Dynamical Systems, a specific feature of RNNs is that their state space may consist of multiple equilibria, not necessary all stable. Thus, the usual local concepts of stability are not sufficient for an adequate description. Accordingly, the analysis have to be done within both the framework of the Stability theory and the framework of Qualitative theory of systems with several equilibria. The presentation firstly focuses on the main structure and features of the human brain, that which have been taken into account for deriving the artificial simulators of its functions. The second part presents the basics for linear and nonlinear dynamical systems including the main concepts of stability – both for local equilibrium and for the global behavior of the system – as well as, the powerfull tool of Lyapunov-like methods used for systems’ analysis. In the third part, different models of RNNs are considered (Hopfield, competitive Cohen-Grossberg, Bidirectional Associative Memory, Cellular Neural Networks, K-Winner-Takes-All networks) and discussed within the framework of the Dynamical Systems.
    • URI
      http://hdl.handle.net/10630/8448
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    AbstractNN-DynamicalSystems.pdf (34.65Kb)
    Colecciones
    • MA - Conferencias Científicas

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA