JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Análisis Matemático, Estadística e Investigación Operativa y Matematica Aplicada - (AM)
    • AM - Conferencias Científicas
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Análisis Matemático, Estadística e Investigación Operativa y Matematica Aplicada - (AM)
    • AM - Conferencias Científicas
    • Ver ítem

    Reduction of complexity and variational data assimilation

    • Autor
      Maday, Yvon
    • Fecha
      2015-05-15
    • Palabras clave
      Análisis matemático
    • Resumen
      Reduced basis methods belong to a class of approaches of \emph{model reduction} for the approximation of the solution of mathematical models involved in many fields of research or decision making and in data assimilation. These approaches allow to tackle, in --- close to --- real time, problems requiring, a priori, a large number of computations by formalizing two steps : one known as "offline stage” that is a preparation step and is quite costly and an ``online stage'' that is used on demand and is very cheap. The strategy uses the fact that the solutions we are interested in belong to a family, a manifold, parametrized by input coefficients, shapes or stochastic data, that has a small complexity. The complexity is measured in terms of a quantity like the ``Kolmogorov width'' that, when it is small, formalizes the fact that some small dimensional vectorial spaces allow to provide a good approximation of the elements on the manifold. We shall make a review of the fundamental background and state some results proving that such a dimension is small for a large class of problems of interest, then use this fact to propose approximation strategies in various cases depending on the knowledge we have of the solution we want to approximate : either explicit through values at points, or through outputs evaluated from the solution, or implicit through the Partial Differential Equation it satisfies. We shall also present a strategy available when a mixed of the above informations is available allowing to propose new efficient approaches in data assimilation and data mining. The theory on the numerical analysis (a priori and a posteriori) of these approaches will also be presented together with results on numerical simulations. Work done in close collaboration with A. T. Patera (MIT, Cambridge) and has benefited from the collaboration with A. Buffa (IAN, Pavia), R. Chakir (IFSTAR, Paris), Y. Chen (U. of Massachusetts, Dartmouth), Y. Hesthaven (EPFL, Lausanne), E. Lovgren (Simula, Oslo), O. Mula (UPMC, Paris), NC Nguyen (MIT, Cambridge), J. Pen (MIT, Cambridge), C. Prud'homme (U. Strasbourg), J. Rodriguez (U. Santiago de Compostella), E. M. Ronquist (U. Trondheim), B. Stamm (UPMC, Paris), G. Turinici (Dauphine, Paris), M. Yano (MIT, Cambridge).
    • URI
      http://hdl.handle.net/10630/9774
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    abstract_maday.pdf (85.29Kb)
    Colecciones
    • AM - Conferencias Científicas

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA