Mostrar el registro sencillo del ítem

dc.contributor.authorLewandowski, Roger
dc.date.accessioned2015-05-15T06:38:16Z
dc.date.available2015-05-15T06:38:16Z
dc.date.created2015
dc.date.issued2015-05-15
dc.identifier.urihttp://hdl.handle.net/10630/9775
dc.descriptionConferencia plenaria por invitaciónes_ES
dc.description.abstractWe define a mathematical framework in which we can specify the Reynolds decomposition and the correlation tensors of an incompressible locally homogeneous and isotropic turbulent flow. After having fixed the technical background and some probabilistic tools, we focus on the 2-order correlation tensor, which is the covariance matrix of the velocity vectors at two different points of the flow. We perform a Taylor expansion of this matrix when the two points are close to one another. We characterize the principal part of this expansion, for which we prove the law of the 2/3 by a mathematical similarity principle.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Conferencias plan propio de investigación de la UMAes_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectAnálisis matemáticoes_ES
dc.subject.otherTurbulencees_ES
dc.subject.otherKolmogorov Lawes_ES
dc.titleThe Kolmogorov Law of turbulence: what can rigorously be proved?es_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.centroFacultad de Cienciases_ES
dc.relation.eventtitleWorkshop on numerical approximations of PDEs. Honoring the 60th birthday of Frédéric Hecht.es_ES
dc.relation.eventplaceMálagaes_ES
dc.relation.eventdate20-22 abril 2015es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem