Pattern recognition frequency-based feature selection with multi-objective discrete evolution strategy for high-dimensional medical datasets

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

Feature selection has a prominent role in high-dimensional datasets to increase classification accuracy, decrease the learning algorithm computational time, and present the most informative features to decision-makers. This paper proposes a two-stage hybrid feature selection for high-dimensional medical datasets: Maximum Pattern Recognition - Multi-objective Discrete Evolution Strategy (MPR-MDES). MPR is a rapid filter ranker that significantly outperforms existing frequency-based rankers in recognizing non-linear patterns, effectively eliminating a majority of non-informative features. Then, the wrapper Multi-objective Discrete Evolution Strategy (MDES) uses the remaining features and obtains sets of solutions which are automatically presented to decision-makers. The experiments conducted on large medical datasets demonstrate that MPR-MDES achieves considerable improvements compared to state-of-the-art methods, in terms of both classification accuracy and dimensionality reduction. In this sense, the proposal successfully performs when presenting informative feature sets to decision-makers. The implementation is available on https://github.com/KhaosResearch/MPR-MDES.

Description

Bibliographic citation

Hossein Nematzadeh, José García-Nieto, José F. Aldana-Montes, Ismael Navas-Delgado, Pattern recognition frequency-based feature selection with multi-objective discrete evolution strategy for high-dimensional medical datasets, Expert Systems with Applications, Volume 249, Part A, 2024, 123521, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2024.123521

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional